Содержание

 

 
 

Поверхность катода не должна разрушаться от ионной бомбардировки

1. Металлизированные пленочные резисторы

Прутки должны иметь гладкую поверхность, так как излишняя шероховатость поверхности приводит к изменениям в толщине наносимого резистивного слоя и вызывает разрывы в металлической пленке, которые затем вызывают повышенный шум. Хотя керамический материал является мало активным с химической точки зрения, на его поверхности могут иметься посторонние загрязнения, например, следы органических смазочных масел или упаковочных материалов. Для их удал...

2. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

Рабочие поверхности катода, сетки и анода этой лампы имеют форму дисков, расположенных очень близко друг к другу. Иногда поверхность электродов несколько выгнута. Вывод от подогревного оксидного катода сделан в виде цилин...

3. Трансформаторы - Общие сведения

Наиболее рациональным решением данной проблемы является изготовление сердечника из мельчайших частичек железа с предварительно обработанной поверхностью, а затем спрессованных вместе с использованием специальных связующих веществ, либо керамики, для о...

4. Газоразрядные и индикаторные приборы - Стабилитроны

Если требуется пониженное напряжение Uст, то поверхность катода с внутренней стороны активируется, чтобы облегчить эмиссию электронов под ударами ионов. Применяя разные смеси газов, подбирают нужное значение Uст. Напряжение UB обычно превышает напряжение Uст не более чем на 20 В. Для снижения напряжения UB на внутренней поверхности катода имеется проводник (он показан на рис. 21.7, а), уменьшающий расстояние между катодом и анодом. Без него стабилитрон работал бы на восходящей (правой) части характеристики возн...

5. Газоразрядные и индикаторные приборы - Индикаторные приборы

Пластинка 3 покрыта сплошным проводящим слоем (электрод 5) с зеркальной поверхностью. На пластинку 1 нанесены прозрачные слои — электроды А, Б, В,.... от которых сделаны выводы, не показанные на рисунке. Эти электроды имеют форму цифр, или букв, или сегментов для синтезирования различных знаков. Если на знаковые электроды напряжение не подано, то ЖК прозрачен, световые лучи внешнего естественного освещения проходят через него, отражаются от электрода 5, выходят обратно и никаких знаков не видно....

6. Специальные электронные приборы для СВЧ - Магнетрон

Индуктивностью резонатора служит цилиндрическая поверхность отверстия, которая эквивалентна одному витку. Большая площадь поверхности витка приводит к уменьшению активного сопротивления и индуктивности. Такой резонатор представляет собой нечто среднее между колебательной системой с сосредоточенными параметрами и четвертьволновой резонансной линией. В некоторых типах магнетронов резонаторы делают в виде щели глубиной в четверть волны (рис. 25.7). Все резонаторы магнетрона сильно связаны друг с другом, вследств...

7. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

Чтобы они не летели в направлении держателей сеток, имеются экраны Э1 и Э2, соединенные с катодом. Кроме того, поверхность катода, находящаяся против держателей сеток, не покрывается оксидным слоем и поэтому не эмитирует. За счет более плотных электронных потоков возрастает плотность объемного заряда. Это вызывает понижение потенциала в пространстве между анодом и экранирующей сеткой. Если напряжение анода ниже, чем экранирующей сетки, то в промежутке экранирующая сетка — анод образуется потенциальный барьер для вторичных электронов. На рис. 19.10 показано распределение электронов в электронном пучке и потенциала в промежутке анод — экранирующая сетка при uа < иg2. К...

8. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

Для устранения этого явления часть спирали в начале или середине делают из провода высокого сопротивления, чтобы поглотить энергию отраженной волны. Часто для поглощения поверхность баллона или изоляторы, поддерживающие спираль, покрывают слоем графита. В ЛБВ для наиболее коротких сантиметровых волн спираль заменяют замедляющими волноводными системами различного типа, так как трудно изготовить спираль очень малых размеров. Подобные замедляющие системы применяются также в мощных ЛБВ, так как спираль не может выдержать рассеяния в ней большой мощности. ЛБВ со спиральной замедляющей системой делают на выходные мощности до 1 кВт и частоты до 10 ГГц. В настоящее время разработано много различных ЛБВ, применяемых в качестве входных, промежуточных ...

9. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа диода

Это металлический цилиндр, поверхность которого покрыта активным слоем, эмитирующим электроны. Внутри цилиндра находится подогреватель в виде проволочки, накаливаемой током. В наиболее распространенной цилиндрической конструкции диода (рис. 15.1) а...

10. Особенности проектирования усилителей с малыми искажениями

(0—25 кГц) Хотя сеточный ток существует только при положительном напряжении на сетке относительно катода, реальные электронные лампы начинают проводить сеточный ток при немного более отрицательных напряжениях на сетке из-за эффекта термопары в соединении между различными нагреваемыми металлами в лампе и электронным облаком над поверхностью катода. У маломощных приемо-усилительных ламп обычно, сеточный ток появляется при напряжении между сеткой и катодом ≈ — 1 В, при этом всегда нужно помнить, что это напряжение складывается, как из напряжения смещения Vgk, так и из амплитуды входного сигнала. Искажения из-за сеточного тока и регулировки громкости Поскольку, регулировка громкости как правило осуществляется путем изменения напряжения сигнала, подводимого к сеточной цепи, то она также может играть определенную роль в возникновении се...

11. Типы конденсаторов. Алюминиевые электролитические конденсаторы

Если перед процессом анодного окисления алюминиевой фольги химическими способами протравить ее поверхность, то поверхность приобретет микроскопические неровности, которые еще больше увеличат эффективную поверхность фольги. Так как электролитическая обкладка конденсатора образует идеальный контакт с поверхностью окисленной обкладки, то в результате ...

12. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

За четверть периода (0,005 с при частоте 50 Гц) температура катода не успевает заметно измениться и эмиссия не пульсирует. Поверхность катода косвенного накала является эквипотенциальной. Вдоль катода нет падения напряжения от тока накала. Анодное напряжение для всех точек...

13. Газоразрядные и индикаторные приборы - Тлеющий разряд

Когда разряд распространится на всю поверхность катода, то при дальнейшем увеличении напряжения Eа ток возрастает, но площадь катода остается неизменной. В этом режиме увеличение числа электронов, выбиваемых из катода, возможно только за счет увеличения энергии ионов, бомбардирующих катод. А для этого необходимо повышение напряжения. Плотность тока катода растет. Сопротивление R0 уже не уменьшается пропорционально току, и произведение iaR0, т. е. падение напряжения на приборе, увеличивается. Наступает режим аномального катодного падения (см. область III на рис. 21.4). Все же сопротивление R0 ...

14. Электронно-лучевые трубки - Люминесцентный экран

Для улучшения свойств экрана поверхность люминофора со стороны луча покрывают алюминиевой пленкой толщиной 0,1 — 2,0 мкм. Эта пленка соединена с проводящим слоем трубки. Металлизированные экраны имеют ряд преимуществ...

15. Принцип устройства и работы электро-вакуумных приборов - Электронная эмиссия

Вторичная электронная эмиссия обусловлена ударами электронов о поверхность тела. При этом ударяющие электроны называются первичными. Они проникают в поверхностный слой и отдают свою энергию электронам данного вещества. Некоторые из последних, получив значительную энергию, могут выйти из тела. Такие электроны называются вторичными. Вторичная эмиссия обычно возникает при энергии первичных электронов 10—15 эВ и выше. Если энергия первичного электрона достаточно велика, то он может выбить несколько вторичных электронов. Вторичная эмиссия характеризуется коэффициентом вторичной эмиссии а, который равен отношению числа вторичных эл...

16. Надежность и испытание электровакуумных приборов

4), сделанный из полоски листового металла, например алюминия, латуни или меди. Наружную поверхность такого радиатора следует зачернить для лучшего излучения. Конечно, надо уменьшать нагрев и от внешних источников, например от других деталей или от с...

17. Фотоэлектронные приборы - Электровакуумные фотоэлементы

Электровакуумные фотоэлементы Электровакуумный (электронный или ионный) фотоэлемент представляет собой диод, у которого на внутреннюю поверхность стеклянного баллона нанесен фотокатод в виде тонкого слоя вещества, эмитирующего фотоэлектроны. Анодом обычно является металлическое кольцо, не мешающее попаданию света на фотокатод. В электронных фотоэлементах...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Некоторые из последних, получив значительную энергию, могут выйти из тела. Такие электроны называются вторичными. Вторичная эмиссия обычно возникает при энергии первичных электронов 10—15 эВ и выше. Если энергия первичного электрона достаточно велика, то он может выбить несколько вторичных электронов. Вторичная эмиссия характеризуется коэффициентом вторичной эмиссии а, который равен отношению числа вторичных электронов п2 к числу первичных n1: σ = n2/n1. (15.5) Коэффициент σ зависит от вещества тела, структуры его поверхности, энергии первичных электронов, угла их падения и некоторых других факторов. Для чистых металлов максимальное значение а бывает в пределах 0,5—1,8. При наличии активирующих покрытий а достигает 10 и более. Для интенсивной вторичной эмиссии применяют сплавы магния с серебром, алюминия с медью, бериллия с медью и др. У них коэффициент σ может быть в пределах 2—12 и больше, причем эмиссия более устойчива, нежели у других веществ. Вторичная эмиссия наблюдается также у полупроводников и диэлектриков. На рис. 15.5 дана зависимость коэффициента σ от энергии первичных электронов W1 При W1 < 10 - 15 эВ вторичной эмиссии нет. Затем она с ростом W1 усиливается, доходя до максимума, после чего ослабевает. Кривая 1 — зависимость для чистого металла, а кривая 2 — для металла с активирующим покрытием. Максимум вторичной эмиссии достигается обычно при энергии W1 в сотни электрон-вольт. Снижение σ при более высоких значениях W1 объясняется тем, что первичные электроны проникают более глубоко и передают энергию электронам, находящимся дальше от поверхности. Последние передают полученную энергию другим электронам и не могут дойти до поверхности. Подобно этому камень, падающий в воду с небольшой скоростью, вызывает сильное разбрызгивание воды; тот же камень при большой скорости быстро входит в воду, не создавая брызг. Вторичные электроны вылетают в различных направлениях и с различными энергиями. Если они не отводятся ускоряющим полем, то образуют около поверхности тела объемный заряд («электронное облачко»). Энергии большинства вторичных электронов значительно выше, нежели энергии
термоэлектронов-
. Рис. 15.5. Зависимость коэффициента вторичной эмиссии от энергии первичных электронов Использование вторичной эмиссии много лет затруднялось тем, что не обеспечивалась ее устойчивость. В дальнейшем были изготовлены устойчиво работающие
вторично-электр-
онные катоды из сплавов металлов и стало возможным создание более совершенных
электровакуумны-
х приборов

 
 
Сайт создан в системе uCoz