Содержание

 

 
 

Параллельно управляемый двухламповый усилитель SRPP может обеспечить значение rа менее 4,3 кОм

1. Катодный повторитель Уайта

При внешнем различии, независимый катодный повторитель Уайта и двухламповый каскад SRPP, описанный позже, являются параллельно управляемыми усилителями, потому что две электронные лампы вносят свой вклад в переменный ток нагрузки. Точные уравнения коэффициента усиления и выходного сопротивления катодного повторителя Уайта, выведенные Амосом и Брикшоу: где μ1, — это верхняя (усиливающая) электронная лампа, a μ2 — нижняя (управляющая) электронная лампа. Используя, в качестве примера, лампу Е88СС с gm = 5 мА/В и μ = 32, приблизительное уравнение дает rвых = 6,9 Ом, а точное уравнение прогнозир...

2. Проблемы смещения по постоянному току

Диодное смещение является идеальным для смещении нижней лампы μ-повторителя или параллельно управляемого SRPP усилителя, потому что анодный ток этих ламп Ia стабилизирован работой цепей смещения верхней электронной лампы. Так как внутренне сопротивление rдиода ≠ 0, изменение тока сигнала вызывает изменение напряжения на диоде. Ток сигнала также порождает падение напряжения на нагрузке каскада RH, поэтому: получаем: Смысл этого уравнения в том, что внутренне сопротивление диода rдиода меняетс...

3. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор величины сопротивления резистора в цепи сетки Выбор выходного разделительного конденсатора Вредное влияние проходной емкости лампы и пути его уменьшения Применение экранированных ламп Каскод (каскодная схема) Катодный повторитель Каскад с общим катодом как приемник неизменяющегося тока Пентоды в качестве приемников неизменяющегося тока Катодный повторитель с активной нагрузкой Катодный повторитель Уайта μ-повторитель Выбор верхней лампы для μ -повторителя Параллельно управляемый двухламповый усилитель (SRPP) β-повторитель Дифференциальная пара (дифференциальный каскад) Коэффициент реакции питающего напряжения (PSRR) дифференциальной пары Полупроводниковые приемники неизменяющегося тока для дифференциальной пары Использов...

4. Параллельно управляемый двухламповый усилитель (SRPP)

35 Параллельно управляемый двухтактный (SRPP) усилитель При построении SRPP каскадов зачастую и верхняя и нижняя лампы выбираются одинакового типа. Рассмотрим режим работы SRPP каскада. Поскольку, постоянный ток, протекающий через обе электронные лампы каскада одинаков и сами лампы одинаковы, их резисторы катодного смещения Rk также равны. Для постоянного тока, верхняя и нижняя части ...

5. Требования к каскаду предоконечного усиления

Выбор лампы для каскада предоконечного усиления В идеале для каскада предоконечного усиления необходима лампа, обладающая малым уровнем нелинейных искажений, особенно, если речь идет о каскаде типа SRPP, страдающим повышенным уровнем гармоник. В отличие от двухтактных усилителей, где уровень четных гармоник (включая наиболее интенсивную вторую) снижается за счет симметрии схемы, в однотактных несимметричных усилителях проблема минимизации нелинейных искажений выходит на передний план. Лампы с рамочной сеткой, обладающие минимальным уровнем искажений, в настоящее время стали почти музейной редкостью (хотя лампа типа Е88СС является, несомненно, одной из лучших), поэтому для выбора среди подходящих по мощности остается только семейс...

6. β-повторитель

β-повторитель Усилительный каскад, называемый β-повторителем позволяет объединить преимущества μ- повторителя (с его хорошим коэффициентом полезного действия) и каскада SRPP (с непосредственной связью между нижней и верхней лампой по постоянному току). Принципиальная схема β-повторителя приведена на рис. 3.39. Замена резистора катодного смещения на биполярный транзистор позволяет не использовать большое (возможно 10 kOm)Rh, уменьшая потери по питанию, и одновременно позволяя двум лампам по прежнему быть непосредственно связанными по постоянному току. Выходные статические характеристики биполярных транзисторов строятся при фиксированном базовом токе, что пре...

7. Определение рабочей точки предоконечного каскада

Оценка значений выходного сопротивления и коэффициента усиления каскада предоконечного усиления Интуитивно можно ожидать, что выходное сопротивление параллельно управляемого каскада типа SRPP, применяемого в рассматриваемом примере в качестве каскада предоконечного усиления, окажется достаточно низким, но это также может быть подтверждено несложным расчетом: Для рассматриваемого варианта усилителя...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Их общее сопротивление составит 75 Ом. Следовательно, для частоты подавления 1 Гц емкость конденсатора составит 2000 мкФ. Конденсаторы с емкостью 2000 мкФ и рабочим напряжением 50 В в то время, когда разрабатывался этот усилитель, не производились и поэтому не могли быть установлены. Сейчас они легко доступны, но существуют две причины, по которым
предпочтительне-
е использовать конденсаторы с меньшими значениями емкости: • конденсатор с емкостью 2000 мкФ помимо емкостного сопротивления имеет значительную индуктивность, что делает действие обратной связи на высоких частотах весьма эффективным. Однако эта проблема может быть сравнительно просто решена установкой
электролитическ-
ого конденсатора, имеющего малую индуктивность и разработанного для использования в импульсных источниках питания, и последующим его шунтированием конденсатором малой емкости; • вторая причина гораздо коварнее. Если из-за перегрузки выходной каскад вынужден перейти в класс В, потенциал на каждом катоде стремиться сместиться в область более поло

 
 
Сайт создан в системе uCoz