Содержание

 

 
 

Управляющая сетка одновременно работает как экранирующая

1. Рабочий режим триода - Основные типы приемно-усилительных триодов

При этом уменьшали расстояние сетка — катод. Так как потенциальный барьер находится очень близко к катоду, то для эффективного управления электронным потоком ...

2. Рабочий режим триода - Усилительный каскад с триодом

Они вызваны нелинейностью сопротивления Rg-к участка сетка — катод, который подобен диоду. При положительном напряжении сетки это сопротивление не более 1000 Ом, а при отрицательном стремится к бесконечности. Источник колебаний нагружен на такое нелинейное сопротивление, поэтому его напряжение искажается. Вследствие искажений напряжения сетки на выходе каскада будет искаженное усиленное напряжение. Наибольшие искажения получаются в том случае, когда сопротивление RИК во много раз больше сопротивления Rg-к. Тогда при положительной полуволне напряжения ...

3. Выбор величины сопротивления резистора в цепи сетки

Ток утечки сетки вызывает некоторое падение напряжения на сеточном резисторе, а следовательно, сетка находится под положительным потенциалом. Это положительное напряжение тем больше, чем больше сопротивление сеточного резистора. Оно вычитается из напряжения сеточного смещения Vск, и ток анода нарастает. Увеличение тока анода поднимает внутреннюю температуру электронной лампы, освобождая еще больше остаточного газа из горячих элементов конструкции, еще более увеличивая ионный ток. При этом Vск понижается далее, катод эмитирует больше электронов, и процесс становится самонарастающим до т...

4. Ламповый стабилизатор напряжения

Применение схемы с входной экранирующей сеткой для нейтрализации фонового шума переменного тока В тех случаях, когда во втором каскаде используется пентод, его экранирующая сетка g2 может рассматриваться в качестве инвертирующего входа. Если в эту точку схемы подать определенную часть несглаженного (необработанного) высоковольтного пульсирующего сигнала, то он будет нейтрализован в анодной цепи, в результате чего будет реализована схема стабилизатора нап...

5. Многоэлектродные и специальные лампы - Схемы включения тетродов и пентодов

Таким образом, экранирующая сетка с конденсатором Cg2 устраняет емкостную связь между анодной и сеточной цепями. Рис. 19.5. Межэлектродные емкости в тетроде Следует сказать еще об одной роли конденсатора Cg2. В усилительном каскаде ток экранирующей сетки пульсирует подобно анодному току. Если переменная составляющая тока экранирующей сетки проходит через резистор Rg2 (или делитель), то напряжение на нем пу...

6. Усилитель на триоде с общим катодом

Из статических характеристик (особенно проходных) лампы видно, что анодный ток очень сильно зависит от анодного напряжениям чем резче эта зависимость (то есть чем больше крутизна лампы), тем резче зависимость анодного тока от сеточного напряжения. Вот почему эта сетка часто называется управляющей сеткой. В дальнейших рассуждениях чтобы связать схему усилителя с анодными характеристиками лампы и извлечь из них максимум полезной информации воспользуемся графоаналитическим методом нагрузочных линий, который очень широко используется в расчетах ламповых схем. Глядя на уравнение закона Ома, является очевидным, что есл...

7. Многоэлектродные и специальные лампы - Специальные лампы

Существовали также восьмиэлектродные октоды, в которых вторая сетка работала как анод триода, а третья сетка была экранирующей. В РЭА широко использовались различные комбинированные лампы, имеющие в одном баллоне две, а иногда три или четыре системы электродов. Применение этих ламп уменьшало габариты аппаратуры ...

8. Дифференциальная пара (дифференциальный каскад)

Так как разность напряжений между двумя сетками будет такой же, как и в предыдущем случае, то и коэффициент усиления дифференциальной пары остается без изменения. Выходное сопротивление дифференциальной пары. При условии, что выходной сигнал дифференциальной пары сбалансирован, эквивалентные сопротивления rвых, приведенные к каждому выводу являются идентичными и равны аналогичному эквивалентному выходному сопротив...

9. Многоэлектродные и специальные лампы - Параметры тетродов и пентодов

Крутизна характеристики S = Δia/ Δig1 при ua = const, иg2 = const, иg3 = const. (19.20) Управляющая сетка в тетродах и пентодах расположена так, же, как и в триодах. Поэтому крутизна у тетродов и пентодов примерно такая ...

10. Линейный каскад

Во-вторых, если лампа 6С45П вдруг перестанет потреблять ток по какой-либо причине (обрыв, выход из строя и т. п.), экранирующая сетка g2 пентода EF184 начнет действовать в качестве анода и попытается пропустить весь задаваемый схемой катодный ток, то есть 14 мА, что незамедлительно привело бы к разруше...

11. Трехэлектродные лампы - Физические процессы

Было бы неправильно утверждать, что сетка действует сильнее, чем анод, только потому, что она находится ближе к катоду. Если сетку расположить около анода и она окажется лишь незначительно ближе к катоду, нежели анод, то и в этом случае она во много раз ослабляет поле анода, проникающее на катод. Следовательно, близость сетки к катоду не явля...

12. Оптимизация входного и фазоинверсного каскадов по постоянному току

В первую очередь следует добиться того, чтобы напряжения смещения сетка-катод обеих ламп было одинаковым и составляло Vgk = —2,5 В. Единственным способом достичь этого является итерационный метод. Немаловажно выровнять и анодные напряжения, которые для каждой лампы должны составлять от 80 до 90 В, при смещении Vgk = -2,5 В. В процессе расчета сперва строится нагрузочная лин...

13. Рабочий режим триода - Межэлектродные емкости

Межэлектродные емкости триода (Свх), емкость анод — катод Са-к — выходной (Свых) и емкость анод — сетка Са-g — проходной (Спр). Они у ламп малой и средней мощности составляют единицы пикофарад. Значения этих емкостей, приводимые в справочниках, включают в себя емкости не только между...

14. Выпрямители с умножением (умножители) напряжения

24 Схема умножителя напряжения Несмотря на то, что умножители напряжения были разработаны для получения сверхвысоких напряжений, они могут с успехом использоваться, например, для создания отрицательного смещения на сетках, а, например, в схеме стереофонического усилителя мощности Roger Cadet с номинальной мощностью 6 Вт используется схема удвоителя напряжения для получения основного высоковольтного напряжения. Существует два основных варианта схемы выпрямления с удвоением напряжения, показанных на рис. 6.25. Рис. 6.25 Разновидности выпрямителей с удвоением напряжения Стандартная схема удвоителя напряжения представл...

15. Усилитель Mullard 5-20

В выходном каскаде используются две лампы типа EL34, включенные по так называемой ультралинейной схеме Блюмлейна, в которой для минимизации искажений использован отвод от точки, соответствующей 43% каждой обмотки выходного трансформатора, к которому подключается экранирующая сетка лампы. В отличие от схемы Williamson в усилителе Mullard 5-20 не предусмотрена возможность для подстройки или установления баланса напряжений смещ...

16. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

Если напряжение анода ниже, чем экранирующей сетки, то в промежутке экранирующая сетка — анод образуется потенциальный барьер для вторичных электронов. На рис. 19.10 показано распределение электронов в электронном пучке и потенциала в промежутке анод — экранирующая сетка при uа < иg2. Кривая ...

17. Многоэлектродные и специальные лампы - Устройство и работа пентода

Поэтому в большинстве случаев ток катода является суммой двух токов, как и в тетроде: iк = ia + ig2. (19.16) Защитная сетка иногда используется как вторая управляющая. Кроме того, возможно применение пентода вместо двух ламп. Тогда в одном каскаде используется триодная часть пентода (катод и первые две сетки), а ...

18. Рабочий режим триода - Каскады с общей сеткой и общим анодом

Например, если S = 5 мА/В, то RВХ ≈ 1/5 = 0,2 кОм. Управляющая сетка одновременно работает как экранирующая. За счет этого емкость Са-к, играющая роль проходной, очень мала. Поэтому каскад с общей с...

19. Выходной каскад по ультралинейной схеме

Однако, если представить себе первичную обмотку выходного трансформатора как обмотку с набором отводов, причем отвод от ее витков может быть сделан на любом витке, то можно достичь схемы включения промежуточной между триодной (когда экранирующая сетка соединена с анодом), и пентодной, когда экранирующая сетка подключается непосредственно к источнику питания ВН. Меняя точку отвода (рис. 7.8), можно достичь либо полностью триодного включения (100%), либо полностью пентодного (0%). Рис. 7.8 Ультралинейный выходной каскад или выходной каскад Блюмлейна Что бы произошло, если бы можно было подключиться к выводу обмотки в промежуточной точке? Этим вопросом задались в 1951 г. ...

20. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа триода

Катод и анод у триодов такие же, как у диодов. Сетка в большинстве ламп выполняется из проволоки. Катод, сетка и анод электровакуумного триода аналогичны соответственно эмиттеру, базе и коллектору биполярного транзистора или истоку, затвору и стоку полевого транзистора. Все, что относится к сетке, обозначается символами с индексом g (от английского слова grid — сетка). Триод имеет цепи накала и анода, подобные таким же цепям диода, и цепь сетки (рис. 15.4), состоящую из промежутка катод — сетка внутри лампы и источника сеточного напряжения Еg. В практических ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Так, например, для счета импульсов предназначены приборы тлеющего разряда декатроны с большим числом катодов, расположенных по окружности. Приходящие импульсы переводят разряд с одного катода на следующий. По свечению одного из десяти индикаторных катодов определяется число импульсов. Каскадное включение нескольких декатронов позволяет отсчитывать не только единицы импульсов, но также десятки, сотни, тысячи и т. д. Это достигается тем, что при разряде около десятого катода декатрона, считающего единицы импульсов, передается импульс на следующий декатрон, считающий десятки импульсов, и возникает свечение на первом катоде, и т. д. В настоящее время счетные устройства с цифровыми индикаторами вытеснили декатроны. Среди приборов дугового разряда следует отметить газотроны, представляющие собой мощные диоды с
термоэлектронны-
м катодом, наполненные инертным газом или парами ртути. Они предназначены для выпрямления высоких напряжений и больших токов, причем падение напряжения на самих газотронах всего лишь 10—30 В. В качестве мощных выпрямителей служат также ртутные вентили и экситроны с одним или несколькими анодами, имеющие жидкий ртутный катод с
электростатичес-
кой эмиссией. Более совершенные ртутные вентили — игнитроны имеют также ртутный катод и дополнительный пусковой электрод, облегчающий возникновение дугового разряда. Широко применялись для выпрямления, в схемах автоматики и во многих других устройствах тиратроны дугового разряда. Это газонаполненные триоды с
термоэлектронны-
м катодом. У них, так же как и у тиратронов тлеющего разряда, сетка теряет свое управляющее действие после возникновения дугового разряда, т. е. она может только удерживать тиратрон в запертом состоянии и отпирать его. В некоторых тиратронах имеется еще экранирующая сетка. Изменяя напряжение на ней, можно изменять напряжение возникновения разряда. На тиратронах дугового разряда работают управляемые выпрямители, в которых выпрямленное напряжение регулируется изменением напряжения управляющих сеток тиратронов. Расход мощности на процесс управления в цепях этих сеток очень небольшой, и за счет этого получается высокий КПД. Специальные импульсные тиратроны дугового разряда служат для получения кратковременных импульсов большой мощности. Одна из разновидностей тиратронов дугового разряда — таситроны, в которых благодаря особой конструкции сетка управляет не только возникновением, но и прекращением разряда. Оригинальным прибором является аркатрон, представляющий собой тиратрон дугового разряда, в котором катод нагревается не током, а за счет ионной бомбардировки. Все эти газоразрядные приборы весьма инерционны и поэтому непригодны для высоких частот, так как процесс рекомбинации после выключения (запирания) прибора требует значительного времени. Приборы с инертными газами могут работать на частотах в десятки килогерц, а приборы с Так, например, для счета импульсов предназначены приборы тлеющего разряда декатроны с большим числом катодов, расположенных

 
 
Сайт создан в системе uCoz