Содержание

 

 
 

Известный по своим характеристикам усилитель мощности

1. Составляющие блока усилителя мощности

В то же время, выходной каскад класса АВ2 сильно нагружает предоконечный каскад за счет сеточного тока, поэтому его предусилительный каскад должен обладать очень низким выходным сопротивлением и обеспечивать высокие токи для возбуждения нагрузки без заметных искажений. В противоположность ему, каскады, работающие без токов управляющих сеток, практически не нагружают предоконечный каскад. В отличие от выходного каскада и предоконечного каскада, остальные каскады усилителя мощности будут нагружены на заранее предска...

2. Усилитель Mullard 5-20

При асимметричной нагрузке выходное сопротивление возрастает до значения примерно 90 кОм, что понижает частоту среза до значения примерно 60 кГц. При анализе работы предусилительного каскада усилителя мощности возникает вопрос, действительно ли он может обеспечить требуемый входной уровень для выходного каскада при приемлемых нелинейных искажениях. Напряжение 85 В будет пада...

3. Переключаемые аттенюаторы

Так как в рассматриваемом случае проектируется предусилитель, предназначенный для согласования известного по своим характеристикам усилителя мощности, то есть с известным усилением, то поэтому можно ожидать перегрузки усилителя мощности только на нескольких последних ступенях регулировки громкости. С целью избежания перегрузки, следует подогнать, насколько это возможно, характеристики аттенюатора к характеристикам индивидуальных входных сигналов с тем, чтобы все входные сигна...

4. Основные виды источников питания

Достаточно часто для питания как предусилительных каскадов, так и усилителя мощности используется единый блок питания, который часто входит в состав усилителя мощности, однако такой вариант вовсе не является обязательным. Будут рассмотрены основные блоки, входящие в состав источника питания, примеры расчета таких блоков, затем будет рассмотрен пример проектирования схем двух блоков питания, используемых на практике. Существует два принципиальных подхода к проектированию схем источников питания, в соответствии с которым их можно разделить на два основных класса: линейные (непрерывные) и импульсные (рис. 6....

5. Источники питания низкого напряжения и синфазный шум

Источники питания низкого напряжения и синфазный шум Классическая схема предусилительного каскада предусматривает использование источников переменного тока для цепей подогревателей катодов, что вызывает связанную с этим проблему фона переменного тока. В схемах современных предусилительных каскадов используются цепи питания накала ламп на постоянном токе, однако, в силу высоких значений токов (достигающих значения 1 — 2 А), которые к тому же очень трудно сгладить до приемлемого уровня пассивными методами, во всех схемах практически безоговорочно используютс...

6. Учет собственных шумов лампы

Относительный уровень шума может быть определен с использованием следующего соотношения: Пример. Предусилитель с входным каскадом, построенным на лампе, имеющей значение крутизны 5,3 мА/В, первоначально предназначался для использования со звукоснимателем, имеющим подвижную катушку, совместно с повышающим трансформатором, имеющем коэффициент трансформации 1:10, позволяющим повысить входное напряжение сигнала, поступающего на предусилитель, до значения 2 мВ среднеквадратического значения при скорости перемещения иглы 5 см/с. Новый звукоснимат...

7. Технические требования к линейному каскаду и способы их реализации

Так как каскад предшествует цепям регулировки громкости, то усилитель мощности будет усиливать все шумы, которые будут генерироваться непосредственно в самом предусилительном каскаде, а также все шумы, поступающие на его вход. Поэтому необходимо обеспечить минимальный уровень собственных шумов в предусилителе. Эти требования определ...

8. Особенности источников смещения подогревателей ламп, находящихся под повышенным потенциалом относительно корпуса

Это означает, что несглаженное низковольтное напряжение не поступает в составной кабель, который соединяет предусилитель с его источником питания и исключает наводку шумов. ...

9. Топология схемы: источники питания и их влияние на элементы, задающие постоянную токовую нагрузку

Топология схемы: источники питания и их влияние на элементы, задающие постоянную токовую нагрузку Лампы семейства *SN7/*N7 вносят нелинейные искажения, в основном, на второй гармонике, влияние которой может быть нейтрализовано использованием в качестве предусилительного каскада дифференциального усилителя при условии, что при этом нет потерь по переменной составляющей полезного тока (сигнала) в общем резисторе дифференциальной пары. Ри...

10. Усилитель Williamson

Гафлер (Hafler) и Кероес (Keroes) решив, что разработанный ими выходной каскад мог бы с успехом питаться от предусилительного каскада усилителя Williamson, совершенно обдуманно преднамеренно увеличили в пять раз величину емкости конденсатора связи между «согласованным» фазоинвертором и предусилительным каскадом с 50 нФ до 0,25 мФ. Это было сделано с целью разделить низкочастотные постоянные времени т улучшить устойчивость на низких частотах. Исходя из собственного опыта автор считает, что если входной каскад и «согласованный» фазоинвертор питаются от общего источника высоковольтного напряжения, возможно возникновение самовозбуждение на низких частотах (рокот). Не следует забывать, что в 1947 г. расчеты цепей производились с использованием умножения в столбик или таблиц, а если требовалась высокая скорость вычислений — с использование...

11. Требования к предусилителю и его структурная схема

Рис. 8.1 Структурная схема предусилительного каскада ...

12. Трансформаторный катодный повторитель в качестве выходного каскада

К сожалению, параметр ц у этих ламп также очень мал, что приводит к значению коэффициента усиления выходного каскада значительно меньше единицы, а это предъявляет весьма специфические требования к конструкции предусилительного каскада усилителя мощности (рис. 7.9). Для такого усилителя, должен использоваться достаточно сложный источник питания, хотя полезная мощность усилителя составляет всего 6 Вт. Предполож...

13. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

Возможные варианты использования конденсаторов в цепях низкочастотного тракта: • переменный конденсатор с емкостью = 300 пФ включается параллельно входу картриджа с подвижной магнитной системой блока частотной коррекции RIAA, что позволяет оптимизировать нагрузку картриджа со стороны предусилительного каскада; • конденсаторы с емкостью = 50 пФ используются для настройки конденсаторов схемы эквалайзера до точных значений. В схемах ламповых коротковолновых радиоприемников часто использовалось множество подстрочных конденсаторов, и хотя они могут и не соответствовать точному значению емкости, необходимому для конкретного использования, их емкость можно уменьшить: так как медные посеребренные пластины просто припаяны к держателю, то они могут быть легко выпаяны, если необходимо уменьшить емкость такого конденсатора (рис. 5.5). Рис. ...

14. Включение сглаживающих конденсаторов при повышенном высоком напряжении

Так как к схеме предусилителя всегда предъявляются более жесткие требования, необходимо рассмотрение начать со схемы источника питания, предназначенного для предусилительных каскадов. После этого можно будет просто использовать уже рассмотренные в деталях блоки для применения в других низкочастотных каскадах. Однако, прежде чем начать рассмотрение конкретных схем, необходимо разобраться с техническими требованиями к источникам питания и их разумному выбору. Выбор высоковольтного напряжения Хотя параметры источника питания должны задаваться таким образом, чтобы соответствовать требованиям нагрузки (то есть в нашем случае аудиоусилителя), предварительный...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

По этой причине использование параллельной работы выходных ламп в ламповом усилителе имеет дополнительное преимущество, заключающееся в том, что при этом уменьшается отношение необходимого числа витков в его обмотках (поскольку выходное сопротивление ламп при параллельном включении уменьшается). Геометрический параметр k зависит от двух основных определяющих: типа и конструкции сердечника и его характеристик, а также конструкции и технологии изготовления обмоток трансформатора. Для стандартных силовых трансформаторов используется, как правило, сердечники с Ш-образной формой пластин, когда каждый слой образуется Ш-образной пластиной и простой замыкающей торцевой пластиной. При укладке слоев
пространственна-
я ориентация пластин часто чередуется, чтобы уменьшить воздушный зазор в месте стыка пластин. Обмотки трансформатора конструктивно представляют собой катушку, одеваемую на среднюю ось буквы «Ш» сердечника. Такая конструкция трансформатора часто называется броневой (рис. 5.14). Традиционно очень высокими
характеристикам-
и обладают трансформаторы, имеющие С-образные сердечники. Такие трансформаторы изготавливаются намоткой длинной ленты в виде толстостенного, несколько приплюснутого с боков цилиндра, который затем разрезается по образующей на две части. Плоскости разреза сердечника тщательно шлифуются. Затем наматываются обмотки трансформатора (конструктивно в виде двух катушек, обычно содержащих части витков первичной и вторичных обмоток каждая), после чего в обмотки вставляются половинки сердечника таким образом, чтобы шлифованные поверхности точно прилегали друг к другу, образуя минимальный зазор. Для надежного скрепления всей конструкции в единое целое используется стальная лента. Эту конструкцию трансформатора часто называют стержневой (рис. 5.15). Рис. 5.14 Послойное чередование порядка укладки Ш-образных пластин при сборке магнитопровода Рис. 5.15 Варианты использования С-образного сердечника Сердечник с С-образной формой достаточно дорог из-за сложного
технологическог-
о процесса, неточная сборка сердечника может привести к образо

 
 
Сайт создан в системе uCoz