Содержание

 

 
 

Влияние сетки на потенциальный барьер около катода

1. Газоразрядные и индикаторные приборы - Тлеющий разряд

В электронном (вакуумном) приборе при наличии эмиссии существует отрицательный объемный заряд, создающий вблизи катода потенциальный барьер (кривая 2). Этот барьер препятствует получению большого анодного тока. В газоразрядном приборе, с тлеющим разрядом за счет большого числа положительных ионов создается положительный объемный заряд. Он вызывает изменение потенциала в пространстве анод — катод в положительную в сторону. Потенциальная диаграмма «выгибается» вниз (кривая 3). Рис. 21.1. Распределение потенциала между электродами при отсутствии разряда (1), в элект...

2. Рабочий режим триода - Основные типы приемно-усилительных триодов

При этом уменьшали расстояние сетка — катод. Так как потенциальный барьер находится очень близко к катоду, то для эффективного управления электронным потоком надо сетку максимально приблизить к потенциальному барьеру. Улучшение технологии производства позволило довести расстояние сетка — катод до десятков микрометров и получить крутизну до нескольких десятков миллиампер на вольт. ...

3. Собственные шумы электронных ламп - Шумовые параметры

Но при этом объемный заряд также возрастет и повысится потенциальный барьер около катода, что вызовет уменьшение анодного тока. Таким образом, налицо два взаимно противоположных изменения, и в результате флюктуации анодного тока будут меньше, чем в режиме насыщения. Так как шумовой ток диода в режиме насыщения легко...

4. Многоэлектродные и специальные лампы - Характеристики и параметры лучевого тетрода

Переход из области I в область II получается более резким, так как анод влияет на второй потенциальный барьер, в лучевом тетроде сильнее, нежели в пентоде. В результате за счет сужения нерабочей области I расширяется рабочая область II. Рис. 19.11. Семейство анодных характеристик лучевого тетрода Другая особенность лучевого тетрода — динатронный ...

5. Общие сведения о катушках индуктивности

На частотах, превышающих значение резонансной, дроссели не могут обеспечить эффективный барьер для шумов, генерируемых при выпрямлении переменного тока, или для ВЧ шумов, поступающих по сети питания. Вопросы применения мощных дросселей будут рассмотрены позже. ...

6. Двухэлектродные лампы - Физические процессы

Правый конец диаграммы сдвигается вверх (кривая 5), потенциальный барьер повышается, и на анод попадает все меньше электронов. Когда барьер настолько увеличится, что ни один электрон не сможет его преодолеть, возрастание отрицательного потенциала анода прекратится. Рис. 16.4. Теоретическая анодная характеристика диода, или график закона степени трех вторых (полукубическая парабола) Рис. 16.5. Действительная анодная характеристика диода Таким образом, изменение анодного тока при изменении анодног...

7. Трехэлектродные лампы - Токораспределение

При uа = 0 и иg > 0 между сеткой и анодом возникает скопление электронов и второй потенциальный барьер. Почти все электроны, «проскочившие» сквозь сетку, возвращаются на нее, так как не могут преодолеть второй потенциальный барьер. Поэтому при uа = 0 ток сетки имеет м...

8. Трехэлектродные лампы - Физические процессы

В режиме объемного заряда около катода образуется потенциальный барьер. Катодный ток зависит от высоты этого барьера. Управляющее действие сетки в триоде подобно действию анода в диоде. Если изменять напряжение сетки, то изменяется высота потенциального барьера около катода. Следовательно, изменяется число электронов, преодолевающих этот барьер, т. е. катодный ток. Если напряжение сетки изменяется в положительную сторону, то барьер понижается, его преодолевает большее число электронов и катодный ток...

9. Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Обратное напряжение, которое будет приложенное к каждому из диодов, во многом определяется величиной барьерной емкости его перехода в момент выключения (Q = CV), а также удельным сопротивлением самого перехода (влияющим на рассасывание неосновн...

10. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

Поэтому не получаются достаточно плотные электронные потоки и не создается потенциальный барьер для вторичных электронов. Достоинство лучевых тетродов — уменьшенный ток экранирующей сетки (не более 7 % анодного). ...

11. Трехэлектродные лампы - Характеристики

Если уменьшать по абсолютному значению отрицательное напряжение сетки, то лампа отпирается, потенциальный барьер у катода понижается и анодный ток возрастает. Число электронов, преодолевающих барьер, растет по нелинейному закону, и поэтому характеристика имеет нижний нелинейный участок АБ, который постепенно переходит в средний, приблизительно линейный участок БВ. При положительном сеточном напряжении характеристика для катодного тока расположена выше характеристики для анодного вследствие ...

12. Многоэлектродные и специальные лампы - Устройство и работа тетрода

Действующее напряжение отрицательно, и барьер у катода настолько высок, что электроны его не преодолевают. Следовательно, при Ug2 = 0 лампа заперта. Например, Ug1 = -3 В, Ug2 = 0, Ua = 300 В, D = 0,002. Тогда UД = -3 + 0,002-300= -3 + 0,6 = = -2,4 В. Ток экранирующей сетки ig2 создается электронами, которые попадают на эту сетку. Если напряжение анода выше, чем напряжение экранирующей сетки, ток ig2 значительно меньше анодного, так как основная масса электронов с большой скоростью пролетает сквозь экранирующую се...

13. Электронно-лучевые трубки - Электростатические электронно-лучевые трубки

Уменьшается катодный ток, а следовательно, ток электронного луча и яркость свечения экрана. Потенциальный барьер повышается в меньшей степени у центральной части катода, так как здесь сильнее влияет ускоряющее поле, проникающее от первого анода через отверстие модулятора. При некотором отрицательном напряжении модулятора потенциальный барьер у краев катода повышается настолько, что электроны уже ...

14. Многоэлектродные и специальные лампы - Характеристики тетродов и пентодов

При иа = 0 почти все электроны не могут преодолеть этот барьер и возвращаются на экранирующую сетку. Ее ток максимален, а на анод попадают лишь электроны со значительными начальными скоростями. Они образуют начальный анодный ток I0. Рис. 19.6. Характеристики пентода для токов анода, экранирующей сетки и катода (а) и семейство анодных характеристик (б) Анод сильно действует на второй потенциальный барьер, и даже незначительное увеличение анодного напряжения приводит к росту анодного тока и уменьшению тока экранирующей сетк...

15. Многоэлектродные и специальные лампы - Специальные лампы

Она способствовала созданию потенциального барьера вблизи управляющей сетки. Тогда эта сетка сильнее действовала на барьер. Недостатком таких ламп был большой и бесполезный ток катодной сетки. Лампы с вторичной эмиссией имели дополнительный электрод — вторичноэмиссионный к...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

В последнее время выпущены стабилитроны коронного разряда, оформленные в керамических баллонах, на напряжение в десятки киловольт. Стабилитрон соединяют параллельно с нагрузкой RH, а последовательно включают резистор Rогр (рис. 21.8). Нагрузкой является тот или иной потребитель (например, анодные цепи и цепи экранных сеток какого-либо усилителя и т. д.), который нужно питать стабильным напряжением. Напряжение источника Е должно быть выше напряжения стабилизации Uст и достаточным для возникновения разряда в стабилитроне. Чем выше напряжение Е, тем выше должно быть сопротивление Rогр, и тогда стабилизация сохраняется при изменении напряжения Е в более широких пределах. Но при большем ограничительном сопротивлении КПД схемы снижается, так как потери мощности в стабилитроне и резисторе Rогр могут оказаться выше полезной мощности потребителя. Поэтому стабилитроны применяют только для установок небольшой мощности, в которых снижение КПД не так важно, как в мощных установках. Стабилитроны наиболее часто работают в режиме, когда сопротивление нагрузки неизменно (RH = const), а напряжение источника нестабильно (Е = var). В этом случае происходит следующее. Когда напряжение источника повышается, то увеличивается ток стабилитрона и почти все изменение напряжения приходится на долю резистора Rогр. Напряжение на стабилитроне и на нагрузке почти постоянно (лишь незначительно возрастает), если изменение тока стабилитрона не выходит за пределы режима нормального катодного падения. Расчет сопротивления Rогр делают по закону Ома. Если напряжение Е изменяется в обе стороны от среднего значения Еср, то Rогр = (Еср - Uст )/(Iср + IН), (21.2) где Iср — средний ток стабилитрона, равный 0,5 (Imin + Imax), a IН - ток нагрузки, IН = Uст / RH. Значение Еср определяется по максимальному и минимальному напряжению источника как Еср = 0,5(Еmin + Еmax). (21.3) После расчета Rогр следует проверить, сохранится ли стабилизация при изменении напряжения от Еmin до Еmax. Это делается следующим образом. При изменении тока стабилитрона от Imin до Imax напряжение на Rогр изменяется на ΔE = Rогр (Imax - Imin). Стабилизация возможна при изменении Е не более чем на ΔE. Если ΔE < Еmax - Еmin, то стабилизация будет не во всем диапазоне и

 
 
Сайт создан в системе uCoz