Содержание

 

 
 

Электроны на пути к аноду сталкиваются с атомами газа и ионизируют их

1. Принцип устройства и работы электро-вакуумных приборов - Электронная эмиссия

Электронной эмиссией называют процесс выхода электронов из твердых или жидких тел в вакуум или газ. Чтобы вызвать электронную эмиссию, надо сообщить электронам добавочную энергию, которую называют работой выхода. Она различна для разных металлов и составляет несколько электрон-вольт. У металлов, имеющих большие по сравнению с другими межатомные расстояния, работа выхода меньше. К ним относятся щелочные и щелочноземельные металлы, например цезий, барий, кальций. Если на поверхност...

2. Расчет переключаемого аттенюатора

Существует вариант очень быстрой проверки, который не является разборкой, проводимой прямо у прилавка в магазине (и которая, к тому же, не исключает опасности зря выбросить деньги на ветер), и заключающийся в том, что с использованием цифрового тестера измеряется сопротивление каждой группы резисторов, когда установлено максимальное значение ослабления. В случае, если имеется ощутимая разница в значениях сопротивлений между разными группами, то вполне вероятно, что проверяется потенциометр с углеродистой токопр...

3. Двухэлектродные лампы - Рабочий режим. Применение диода для выпрямления переменного тока

Ухудшается вакуум за счет выделения газов из перегретых электродов. Газ ионизируется. Положительные ионы бомбардируют катод, способствуя его перегреву и разрушению. При выпрямлении токов очень высокой частоты вредно влияет емкость анод — катод диода Са-к. Она состоит из емкости между электродами и емкости между выводными проводниками. Значение Са-к достигает е...

4. Газоразрядные и индикаторные приборы - Индикаторные приборы

Это объясняется тем, что перед возникновением разряда газ неионизирован. А перед прекращением разряда газ ионизирован, и разряд существует при более низком напряжении. Неоновая лампа применяется в качестве индикатора постоянного и переменного напряжения. При переменном напряжении разряд возникает в момент, когда мгновенное значение напряжения становится равным напряжению UB. Промышленность выпускает много различных неоновых ламп. Напряж...

5. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Это достигается применением специального газопоглотителя (геттера). Сложные катоды могут быть пленочными или полупроводниковыми. К первым относится, например, торированный карбидированный катод. Он представляет собой вольфрамовую проволочку с пленкой тория и с примесью углерода. Активный слой этих катодов трудно разрушить ионной бомбардировкой. Их применяют при анодных напряжениях до 15 кВ. К полупроводниковым относится оксидный катод. В нем на основание из никеля или вольфрама наносится смесь оксидов щелочноземельных металлов — бария, кальция и стронция. У окс...

6. Принцип устройства и работы электро-вакуумных приборов - Общие сведения, классификация

Общие сведения, классификация Электровакуумными приборами (ЭВП) называют приборы, в которых рабочее пространство, изолированное газонепроницаемой оболочкой, имеет высокую степень разрежения или заполнено специальной средой (пары или газы) и действие которых основано на использовании электрических явлений в вакууме или газе. Под вакуумом следует понимать состояние газа, в частности воздуха, при давлении ниже атмосферного. Если электроны движутся в пространстве свободно, не сталкиваясь с оставшимися посл...

7. Газоразрядные и индикаторные приборы - Дисплеи

Дисплеи на светоизлучающих диодах, как правило, имеют небольшие (несколько сантиметров) линейные размеры и низкое (не более 5 В) напряжение питания. Дисплеи на газоразрядных элементах, иначе плазменные, имеют две взаимно перпендикулярные системы электродов в виде проводящих полос. Между электродами инертный газ — неон, или ксенон, или смесь газов. Такие системы иногда называют еще газоразрядными индикаторными панелями (ГИП). Дисплеи с электродами в виде ...

8. Газоразрядные и индикаторные приборы - Краткие сведения о различных газоразрядных приборах

Краткие сведения о различных газоразрядных приборах Помимо рассмотренных газоразрядных приборов в РЭА встречаются и некоторые другие. Так, например, для счета импульсов предназначены приборы тлеющего разряда декатроны с большим числом катодов, расположенных по окружности. Приходящие импульсы переводят разряд с одного катода на следующий. По свечению одного из десяти индикаторных катодов определяется число импульсов. Каскадное включение нескольких декатронов позволяет отсчитывать не только единицы импульсов, но также десятки, сотни, тысячи и т. д. Это ...

9. Пример разработки двухтактного усилителя мощности

К великому сожалению, этот магазинчик, торгующий старым хламом, закрылся вскоре после приобретения, сделанного автором в давнем 1982 г. Как уже указывалось ранее, выбор выходных ламп налагает строгие ограничения и на параметры выходного трансформатора, то есть происходит некая фиксация структуры и элементов выходного каскада. В рассматриваемой конструкции будет исп...

10. Газоразрядные и индикаторные приборы - Тлеющий разряд

Ток будет ограничиваться главным образом только внутренним сопротивлением источника, так как сопротивление газоразрядного прибора при дуговом разряде весьма невелико. Произойдет короткое замыкание источника, ток возрастет очень быстро до недопустимо большого значения, и может произойти разрушение газоразрядного прибора. В схеме на рис. 21.3 роль ограничительного резистора в известной степе...

11. Фотоэлектронные приборы - Электровакуумные фотоэлементы

2,б) такие характеристики сначала идут почти так же, как у электронных фотоэлементов, но при дальнейшем увеличении анодного напряжения вследствие ионизации газа ток значительно возрастает, что оценивается коэффициентом газового усиления, который может быть равным от 5 до 12. Энергетические характеристики электронного и ионного фотоэлемента, дающие зависимость Iф = f(Ф) при Ua = const, показаны на рис. 22.3. Частотные характеристики чувствительности дают зависимость чувствительности от частоты модуляции светового потока. Из рис. 22.4 видно, что электронные фотоэлементы (линия 1) малоинерционны. Они могут работать на частотах в сотни мегагерц, а ионные фотоэлементы (кривая 2) проявляют значительную инерционность, и чувствительность их снижается уже на частотах в ...

12. Ограничения по выбору рабочей точки

Игнорирование этих пределов обычно вызывает быстрое разрушение электронной лампы, сопровождаемое голубыми вспышками и хлопками, так как остаточный газ в электронной лампе ионизируется и разрушает ее. Само по себе наличие повышенного напряжения между анодом и катодом может и не вызывать необратимого повреждения, но если при этом через лампу течет большой анодный ток, ...

13. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмисси...

14. Усилитель класса А для электромагнитных головных телефонов с непосредственной междукаскадной связью

Несколько лет назад, автор приобрел в магазине подержанных вещей 40 полевых МОП-транзисторов серии IRF с n-каналом и p-каналом, и после проверки на характериографе, удалось подобрать две приемлемых комплементарных пары. Сразу всплыла идея создания гибридного усилителя, связанная с желанием использова...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Она происходит под действием сильного внешнего электрического поля, т. е. представляет собой сочетание
электростатичес-
кой эмиссии с
термоэлектронно-
й. Однако с течением времени такая эмиссия быстро ослабевает (рис. 15.6). Говорят, не совсем удачно, что сверхвысокая эмиссия «отравляет» оксидный катод. «Отравление» прекращается, если катод «отдохнет». Тогда он восстанавливает свою эмиссионную способность и может снова дать на короткое время большой выход электронов. Это объясняется тем, что в оксидном слое должно накопиться достаточное число электронов. Длительность импульсов эмиссионного тока обычно не более 20 мкс. Оксидный катод в импульсном режиме имеет эффективность до 104 мА/Вт. Импульсы катодного тока могут достигать единиц и даже десятков ампер. При коротких импульсах катод почти не подвергается ионной бомбардировке, и поэтому допустимо анодное напряжение 10-20 кВ. Помимо оксидных катодов в последнее время применяются сложные катоды новых типов:
ториево-оксидны-
е, синтерированные {губчатые) и др. Катоды прямого накала представляют собой проволоку или ленту. Достоинство таких катодов — простота устройства и возможность их изготовления для самых маломощных ламп на ток накала 10 мА и меньше. Катод в виде тонкой проволоки после включения накала быстро разогревается (за время менее 1 с), что весьма удобно. Недостаток этих катодов — паразитные пульсации анодного тока при питании цепи накала переменным током. Если, например, ток накала имеет частоту 50 Гц, то в анодном токе будут пульсации с частотой 50, 100, 150 Гц и т. д. Они создают помехи, искажая и заглушая полезный сигнал. При слуховом приеме эти пульсации проявляют себя характерным гудением — фоном переменного тока. Имеются две основные причины таких вредных пульсаций. Рис. 15.7. Пульсации температуры катода прямого накала при питании переменным током Рис. 15.8. Катоды косвенного накала: а — цилиндрический; б — дисковый Во-первых, у тонких катодов возникают пульсации температуры, так как масса и теплоемкость этих катодов малы. Когда ток достигает амплитудного значения, температур

 
 
Сайт создан в системе uCoz