Содержание

 

 
 

Распределение электронного потока

1. Раздельное выравнивание частотной характеристики блока коррекции RIAA

Поэтому, следует рассмотреть, каким образом можно осуществить распределение задач коррекции между раздельными цепями. Наиболее рациональным путем осуществления такого разделения, является объединение ...

2. Специальные электронные приборы для СВЧ - Лампы бегущей и обратной волны

Знаками «плюс» и «минус» показано распределение потенциалов на проводе спирали, причем жирные знаки соответствуют более высокому потенциалу. Изображено поле в какой-то определенный момент времени. Так как волна бежит по спирали, то поле вращается вокруг ее оси и перемещается вдоль этой оси со...

3. Двухэлектродные лампы - Физические процессы

(16-2) Наглядное представление о процессах в диоде дают потенциальные диаграммы, показывающие распределение потенциала в пространстве анод — катод (рис. 16.2). По горизонтальной оси откладывают расстояние от катода, а по вертикальной — потенциал, причем положительный принято откладывать вниз. Потенциал катода принимается за нулевой. Когда катод не накален, то объемный заряд отсутствует и поле однородно. Потенциал растет пропорционально расстоянию от данной точки до катода (прямая 1). Если же катод накален, то существует объемный отрицательный заряд, и тогда потенциалы всех точек понизятся, за исключение...

4. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

На рисунке для этого режима показаны графики наведенных токов в цепях триода (рис. 24.8,б и в) и распределение электронного потока, т. е. конвекционного тока, в разные моменты времени (рис. 24.8, г). Сетку триода будем считать настолько густой, что участки сетка — катод и анод — сетка можно рассматривать как отдельные диоды. До момента t1 лампа заперта и токов нет. В момент t1 лампа отпирается, начинается движение электронов от катода (точнее, от «электронного облачка» око...

5. Газоразрядные и индикаторные приборы - Тлеющий разряд

Потенциальная диаграмма «выгибается» вниз (кривая 3). Рис. 21.1. Распределение потенциала между электродами при отсутствии разряда (1), в электронном приборе (2) и в газоразрядном приборе с тлеющим разрядом (3) Как видно, в газоразрядном приборе распределение потенциала таково, что почти все анодное напряжение приложено к тонкому слою газа около катода. Эта область ,(I) называется областью катодного падения потенциала. Около катода создается сильное ускоряющее поле. Анод как бы приближается к катоду. Роль анода выполняет «нависшее» над катодом ионное облако с положительным зарядом. В результате этого действие отрицател...

6. Особенности цифрового сигнала от компакт-диска

Однако, оказывается возможным усилить чисто субъективное чувство улучшения путем манипулирования с частотным распределением квантованного (оцифрованного) шума, используя такой технический прием, как взвешенные коэффициенты шума. В настоящее время это позволяет достичь улучшения порядка 18 дБ (пригодного к ...

7. Особенности работы электронных ламп на СВЧ - Наведенные токи в цепях электродов

6,б показано для различных моментов времени распределение электронного потока, т.е. конвекционного тока, в промежутке анод — катод. Рис. 24.6. Наведенный ток в диоде В момент t1 электроны начинают двигаться от катода (точнее, от «электронного облачка» около катода) и возникает наведенный ток. Промежуток анод — катод еще не заполнен электронами. Через некоторое время, в момент t2, значительная часть этого промежутка уже заполнена электронами. Так как они движутся в ускоряющем поле, то скорость их больше, чем в момент t1,....

8. Применение экранированных ламп

Величина тока экранирующей сетки оказывает существенное влияние на величину анодного тока (поскольку между анодом и этой сеткой осуществляется перераспределение электронного потока, испускаемого катодом), что сказывается на режим работы каскада. В большинстве ламповых каскадов (за исключением особых режимов работы мощных ламп радиопередатчиков) в нормальном режиме работы величина тока экранирующей сетки должна составлять около четверти от величины анодного тока. Резистор RC2, включается для того, чтобы воспрепятствовать увеличению тока экранирующей сетки, при нарастании которого, будет расти и падение напряжен...

9. Трехэлектродные лампы - Токораспределение

Токораспределение При положительном напряжении сетки наблюдается токораспределение, т. е. распреде...

10. Многоэлектродные и специальные лампы - Межэлектродные емкости тетродов и пентодов

Принцип устройства и условное графическое обозначение лучевого тетрода Рис. 19.10. Распределение электронов (а) и потенциала (б) в лучевом тетроде ...

11. Учет собственных шумов лампы

Шум в электронной лампе возникает по той причине, что протекающий в ней анодный ток Iа существует за счет множества отдельных электронов, которые бомбардируют анод, а также потому, что электроны, покидающие катод в результате термоэлектронной эмиссии и образующие электронное облако, имеют разброс по своим скоростям (который описывается так называемым распределением Максвелла). Отсюда следует, что физико-химические свойства самого катода и соответствующие процессы, происходящие на нем, могут значительно повлиять на уровень собственных шумов лампы. В инженерной практике достаточно часто используются упрощенные...

12. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пе...

13. Выбор величины сопротивления резистора в цепи сетки

Молекулы остаточного газа находятся в постоянном хаотическом движении, называемом броуновским движением, которое определяет равномерное распределение отдельных молекул газа внутри объема баллона электронной лампы. Таким образом, довольно велика вероятность нахождения отдельных молекул газа на пути движения элек...

14. Многоэлектродные и специальные лампы - Устройство и работа лучевого тетрода

На рис. 19.10 показано распределение электронов в электронном пучке и потенциала в промежутке анод — экранирующая сетка при uа < иg2. Кривая 1 соответствует обычному тетроду или лучевому тетроду, если ток в нем небольшой. Кривая 2 для лучевого тетрода с нормальным анодным током показывает, что при иа = 50 В и иg2 = 200 В создается потенциальный барьер «высотой» 30 В для вторичных электронов, выбитых с анода. На участке от φmin = 20 В до анода на вторичные электроны действует тормозяще...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Для того чтобы рассчитать значение емкости конденсатора, требуемого для формирования цепи с постоянной времени 75 мкс, необходимо найти величину общего эквивалентного сопротивления в схеме замещения Тевенина, которое оказывается включенным параллельно этому конденсатору (рис. 8.24). Рис. 8.24 Определение параметров цепи с постоянной времени 75 мкс блока частотной коррекции RIAA Для упрощения расчета первоначально можно проигнорировать наличие конденсатора С1, величина которого будет учтена позже. Конденсатор С3 включен параллельно резистору сеточного смещения R5, а они оказываются включенными последовательно с комбинацией резисторов, образованных из выходного сопротивления предыдущей лампы и резистора R4. Как обычно, величина сопротивления резистора сеточного смещения задается максимально большой, поэтому можно принять, что сопротивление R5 = 1 МОм. Далее предстоит выбрать величину резистора R4. Выходное эквивалентное сопротивление rout должно составлять небольшую по сравнению с сопротивлением резистора R4 величину, в противном случае изменение внутреннего анодного сопротивления rа вызовет нарушение точности выравнивания характеристики, однако, слишком большое значение R4 привело бы к образованию совместно с резистором R5 делителя напряжения, вызывающего неоправданно высокие потери. На высоких частотах конденсатор С3 образует
короткозамкнуту-
ю цепь, в силу этого для входной лампы резистор R4 образует дополнительную выходную нагрузку по переменной составляющей. Величина сопротивления резистора R4, равная 200 кОм, является весьма подходящим значением. Дополнительным преимуществом выбора именно такого значения является то, что резисторы с таким значением номинала одновременно присутствуют как в нормали (классе точности) резисторов Е96, имеющих класс точности 0,1 %, так и в нормали Е24, имеющих класс точности 1 %. Следует иметь в виду, что очень небольшое количество номиналов для резисторов нормали Е96 совпадает с номиналами резисторов, входящих в нормаль Е24. Используемая комбинация резисторов R4 и R5 позволяет получить приемлемое значение потерь в 1,6 дБ,

 
 
Сайт создан в системе uCoz