Содержание

 

 
 

Вакуумные диоды для выпрямления переменного тока электросети (кенотроны) могут работать при высоких обратных напряжениях — сотни и тысячи вольт

1. Схема источника питания

Дополнительно к этому, конкретный (взятый из утильсырья многочисленных запасников автора) высоковольтный трансформатор имеет преимущество в виде пары накальных обмоток, имеющих выводы от средней точки, напряжением 6,3 В и рассчитанных на токи 4 А, которые оказались вполне пригодными для питания ламп задающего каскада, а также и выпрямительного кенотрона типа EZ80 и реле задержки. Принципиальная схема источника питания приведена на рис. 7.47. Межкаскадная отрицательная обратная связь и напряжения смещения Как было указано ранее, в усилителе не используется межкаскадная отрицательная обратная связь. Если будет необходимо, обратная связь может быть взята от выходной точки усилит...

2. Номинальное значение тока дросселя

Результаты графического исследования позволили изменить вид уравнения и свести его к следующему: Однако, общий максимальный ток itotal peak сиrrent протекающий через дроссель, складывается из максимального значения переменной составляющей тока IAC(peak) и постоянной составляющей тока IDC, протекающего в нагрузке: В качестве примера можно рассмотреть усилитель мощности класса А, в котором используется пара ламп-кенотронов типа 845 для схемы двухтактного выпрямления, и в котором используется не отфильтрованное высоковольтное напряжение 1100 В при величине тока 218 мА. В схеме выпрямителя усилителя используется дроссель с индуктивностью 10 Гн и номинальным током 350 мА, но можно ли считать такой вариант оптимальным? Трансформатор, питающий входной дроссель фильтра, имеет выходное напряжение υm(RMS) = 1224 В. Используя ранее приведенные выражения и считая, что частота сетево...

3. Особенность выпрямления высоковольтного напряжения

Если контакты реле задержки включены в цепь источника питания подогревателя лампового выпрямительного кенотрона, то время задержки теплового реле прибавляется ко времени задержки начала работы самого кенотрона и высоковольтное напряжение начнет постепенно повышаться спустя примерно 5 с после истечения времени задержки, которое необходимо для нормальной работы выходной лампы. В других вариантах используется способность многих реле задержки переключать сетевое напряжение питания или высоковольтное напряжение, но для таких реле должна существовать незначительная разница между напряжением подогревателя биметалл...

4. Принцип устройства и работы электро-вакуумных приборов - Общие сведения, классификация

Диоды для выпрямления переменного тока в источниках питания называются кенотронами. Лампы, имеющие помимо катода и анода электроды в виде сеток, с общим числом электродов от трех до восьми, — это соответственно триод, тетрод, пентод, гексод, гептод и октод. При этом лампы с двумя и более сетками называются многоэлектродными. Если лампа содержит несколько систем электродов с независимыми потоками электронов, то ее называют комбинированной (двойной диод, двойной триод, триод — пентод, двойной диод — пентод и...

5. Надежность и испытание электровакуумных приборов

Наименьшую надежность имеют мощные генераторные, модуляторные и усилительные лампы, высоковольтные кенотроны и другие мощные приборы. Высокая надежность и долговечность приборов может быть обеспечена строгим соблюдением правил эксплуатации, изложенных в справочниках. Прежде всего нельзя допуск...

6. Использование накопительного конденсатора для снижения высоковольтного напряжения

Использование ламповых выпрямителей для шин отрицательных напряжений не совсем оправдано, так как при этом требуются пара отдельных выпрямительных диодов (кенотронов), например EY84, а для того, чтобы избежать превышения допустимого значения напряжения между катодом и по...

7. Двухэлектродные лампы - Рабочий режим. Применение диода для выпрямления переменного тока

Поэтому нет необходимости в последовательном соединении кенотронов. Для кенотронов, работающих в выпрямителях, опасно короткое замыкание нагрузки. В этом случае все напряжение источника будет приложено к кенотрону и анодный ток станет недопустимо большим. Происходит перегрев катода и его разрушение. Анод также перегревается. Ухудшается вакуум за счет выделения газов из перегретых эле...

8. Выпрямление переменного тока

1 данные позволяют производить быстрое сравнение характеристик наиболее распространенных двойных выпрямительных ламповых диодов (двухполупериодных кенотронов), за получением более подробной информации необходимо будет обратиться к паспортным данным, представляемых производителями ламп. Таблица 6.1 Тип лампы Rseries, Ом (Vout = 300 В)C(max), мкФIheater, мА EZ90/6X470520160,6 EZ80/6V490215500,6 EZ81/6CA4150190501 GZ34/5AR425075601,9 GZ372507560*2,8 Примечание. Компания Маллэрд (M...

9. Двухэлектродные лампы - Основные типы

К таким лампам можно отнести некоторые высоковольтные кенотроны и большинство мощных кенотронов. У катода косвенного накала вывод делают иногда общим с одним выводом подогревателя. Ряд диодов имеют ...

10. Выбор элементов оконечного каскада

Пара разобранных автором на запчасти усилителей типа Leak TL12+ дала свой вклад в виде выходных трансформаторов для второй модификации усилителя, тогда как пара оказавшихся лишними силовых трансформаторов и дросселей была использована для высоковольтного источника питания одной из модификаций, выпрямители которого построены на вакуумных кенотронах типа GZ34 (рис. 7.36). Рис. 7.36 Внешний вид авторского прототипа усилителя В течение последних девяти лет с этим усилителем эксплуатировалась пара громкоговорителей Rogers LS3/5a, а сам усилитель использовался для прослушивания компакт-дисков. Более поздняя версия усилителя использовалась в основной звуковоспроизводящей системе автора для небольших ВЧ д...

11. Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Схема задержки включения высоковольтного напряжения В самом начале ламповые выпрямители рассматривались в качестве примера плавного включения ламповых электронных схем (поскольку разогрев вакуумных диодов — кенотронов требует определенного времени). Однако ламповые выпрямители являются дорогостоящими. В отличие от них схемы с...

12. Выбор выходного разделительного конденсатора

Таким образом, необходима задержка включения полупроводникового выпрямителя ВН, либо применение лампового, поскольку нити накала вакуумных диодов (кенотронов) прогреваются достаточно долго. Более того, на нити накала маломощных ламп (каскадов предварительного усиления) накальное напряжение зачастую подается сразу после включения шнура питания усилителя в сеть, независимо от положения выключателя питания. Теперь нужно выбрать величину емкости разделительного конденсатора. От величины той емкости зависит реактивное сопротивление конденсатора, которое, еще раз напомним, максимально в области низких частот. Таким образом, этот конденсатор будет определять АЧХ усилителя в области низких частот. Разум...

13. Принцип устройства и работы электро-вакуумных приборов - Устройство и работа диода

Положительное анодное напряжение у маломощных диодов составляет доли вольта или единицы вольт. У кенотронов средней мощности оно достигает десятков вольт, а у мощных кенотронов сотен вольт и более. Условились принимать потенциал катода за нулевой, так как от катода электроны начинают свое движение. П...

14. Варианты применения стабилизатора высоковольтного напряжения

Таким образом, номинальное высоковольтное напряжение, необходимое для подачи на вход стабилизатора, определяется: Проверка паспортных данных лампы-кенотрона EZ81 показала, что для ее работы необходим силовой трансформатор, у которого высоковольтные обмотки с отводом от средней точки рассчитаны на напряжения 412-0-412 В. Высоковольтные мощные биполярные транзисторы имеют дос...

15. Проверка работоспособности усилителя

Оценивая произошедшее, можно сказать, что это оказалось своеобразной удачей, так как более худшая фильтрация фона позволила обнаружить, что недорогой выпрямительный кенотрон типа EZ81 открывался и закрывался на удивление чисто и провоцировал крайне незначительные низкочастотные помехи типа «звон» (рис. 7.31). Рис. 7.31 Форма выходного напряжения выпрямительного кенотрона типа EZ81 при использовании упрощенного сглаживающего фильтра Примечание. На нижнем графике в увеличенном масштабе показан...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Каскад с общим катодом как приемник неизменяющегося тока Мы рассматривали ранее, что в усилителе с общим катодом, с нешунтированным Rк, rа повышается из-за отрицательной обратной связи. Можно использовать этот эффект для создания приемника неизменяющегося тока (рис. 3.25). Предположим, что нужно сделать приемник тока 2 мА, используя электронную лампу Е88СС, и что для приемника имеется источник питания 204 В. Такой каскад-приемник представляет собой хорошую анодную нагрузку для простейших усилительных каскадов, рассмотренных выше. Рис. 3.25 Приемник неизменяющегося тока При определении режима лампы — приемника можно
интерпретироват-
ь точку Va = 204 В, Iа = 0 мА как один конец нагрузочной линии, и нанести эту точку на график выходных статических характеристик лампы (рис. 3.26). Рис. 3.26 Режимы работы приемника неизменяющегося тока Нанесение на график точки Va = 204 В, Iа = 0 мА легко, но мы не знаем где будет другой конец нагрузочной линии. Мы знаем, что в рабочей точке Iа = 2 мА, хотя не знаем напряжения. Выберем напряжение, Va = — 81 В что является хорошим выбором с точки зрения линейности. Линейность все также важна и в приемнике неизменяющегося тока, потому что на практике этот каскад, вероятно, будет модулировать анодное напряжение аудиосигналом. Если линейность будет плохой, это приведет к непостоянству rа, что является составляющей условий, которые определяют выходным сопротивлением приемника. Если выходное сопротивление изменяется при подаче напряжения, то при использовании такого
каскада-приемни-
ка в качестве активной нагрузки для другой электронной лампы, оно будет вызывать искажения усиливаемого этой электронной лампой сигнала. Если начертить нагрузочную линию, то можно найти ток, идущий через RH, при Va = 0. Отсюда можно вычислить величину RH, которая равна 60 кОм. Ближайшее значение стандартного резистора равно 62 кОм, и его мы будем использовать. Поскольку Iа = 2 мА, мы знаем, что на катоде электронной лампы будет 124 В. VCK = 2,5 В, таким образом, на сетке должно быть 121,5 В. Это напряжение устанавливается обычным способом, используя делитель напряжения в сочетании с блокировочным конденсатором. Назначение всех этих элементов уже неоднократно рассматривалось выше. Сопротивление

 
 
Сайт создан в системе uCoz