Содержание

 

 
 

Ламповый выпрямительный диод не отличается высокой эффективностью работы

1. Параллельно управляемый двухламповый усилитель (SRPP)

Очевидным решением было увеличить ток покоя в каскаде, но это будет расточительным использованием электричества — потому что в реальных изображениях максимальная амплитуда высокочастотного сигнала появляется очень редко (в отличие от испытательных сигналов). Двухламповый усилительный каскад SRPP как раз и решает проблему вредного шунтирующего действия емкостной составляющей нагрузки (включая выходную емкость самой лампы, емкость монтажа и т. п.) без необходимости увеличения тока покоя, либо выходной мощности. Упрощенная схема такого каскада показана на рис. 3.35. Нижняя лампа является основным усилителем, а верхняя ламп...

2. Ламповый стабилизатор напряжения

37 Принципиальная схема лампового стабилизатора напряжения применения в последовательных стабилизаторах и способен пропускать значительные токи при низких значениях анодных напряжений. В схеме используется ламповый выпрямитель, и в противовес его очень слабой способности ограничивать токи пульсаций в качестве накопительного конденсатора используется бумажно-фольговый конденсатор с емкостью 8 мкФ, хотя использование полипропиленового конденсатора (с емкостью порядка 60 мкФ для данного конкретного типа выпрямителя) было бы гораздо целесообразнее с точки зрения происходящих физических процессов. В результате, использование упомянутого бумажного конденсатора приводит к значительным нап...

3. Выпрямление переменного тока

При рассмотрении схемы высоковольтного источника питания, для которого напряжение постоянного тока VDC не превышает 1 кВ, необходимо сделать выбор между использованием кремниевого полупроводникового диода или вакуумного термоэлектронного диода (кенотрона), например, такого, как GZ34. Ламповый выпрямительный диод не отличается высокой эффективностью работы. Дело заключается не только в том, что для него требуется источник питания подогревателей, но и в том, что на ламповых в...

4. Традиционный линейный каскад

Традиционный линейный каскад В самых общих чертах ламповый предусилитель должен рассчитываться из условия, при котором в нагрузку с резистивной составляющей входного сопротивления величиной 1 МОм необходимо подавать сигнал величиной 2 В, даже если это потребует внесения изменений в усилитель мощности для достижения условия согласования каскадов. Рис. 8.2 Изменение схемы стандартного входного каскада при переключении пентода на триодную схему работы Более старые модели источников сигнала (особенно это касается тюнеров) были рассчитаны на величину выходного сигна...

5. Перенапряжения, возникающие при включении схемы

Перенапряжения, возникающие при включении схемы В случаях, когда не используется ламповый выпрямитель, а применен полупроводниковый, высоковольтное напряжение при включении подается в цепи схемы мгновенно, и если это происходит до того, как приемо-усилительные лампы еще не прогреты, это напряжение может сократить срок службы их катодов. Резкий скачок напряжения до номинального значения на электролитических конденсаторах также является крайне нежелательным из-за, прежде всего, высоких протекающих токов заряда, поэтому становится крайне необходимым рассмотреть возможные пути решения данн...

6. Электронная лампа, радиолампа. Физика и схемотехника

Применение диода для выпрямления переменного тока Основные типы Трехэлектродные лампы Физические процессы Токораспределение Действующее напряжение и закон степени трех вторых Характеристики Параметры Рабочий режим триода Особенности Усилительный каскад с триодом Параметры усилительного каскада Аналитический расчет и эквивалентные схемы усилительного каскада Графоаналитический расчет режима усиления Генератор с триодом Межэлектродные емкости Каскады с общей сеткой и общим анодом Недостатки триодов Основные типы приемно-усилительных триодов Многоэлектродные и специальные лампы Устройство и работа тетрода Устройство и работа пентода Схемы включения тетродов и пентодов Характеристики тетродов и пентодов Параметры тетродов и пентодов Межэлектродные емкости тетродов и пентодов Устройство и работа лучевого тетрода Характеристики и параметры лучевого тетрода Рабочий режим тетродов и пентодов Пентоды переменной крутизны Краткие сведения о различных типах тетродов и пентодов Специальные лампы Электронно-лучевые трубки Общие сведения Электростатические электронно-лучевые трубки Магнитные электронно-лучевые трубки Люминесцентный экран Краткие сведения о различных электронно-лучевых трубках Газоразрядные и индикаторные приборы Электрический разряд в газах Тлеющий разряд Стабилитроны Тиратроны тлеющего разряда Индикаторные приборы Дисплеи Краткие сведения о различных газоразрядных приборах Фотоэлектронные приборы Фотоэлектронная эмиссия Электровакуумные фотоэлементы Фотоэлектронные умножители Собственные шумы электронных ламп Причины собственных шумов Шумовые параметры Особенности работы электронных ламп на СВЧ Межэлектродные емкости и индуктивности выводов Инерция электронов Наведенные токи в цепях электродов Входное сопротивление и потери энергии Импульсный режим Основные типы электронных ламп для СВЧ Специальные электронные приборы для СВЧ Общие сведения Пролетный клистрон Отражательный клистрон Магнетрон Лампы бегущей и обратной волны Амплитрон и карматрон Надежность и испытание электровакуумных приборов Надежность и испытание электровакуумных приборов Основы схемотехники ламповых усилителей Усилитель на триоде с общим катодом Ограничения по выбору рабочей точки Режим в рабочей точке Катодное смещение Выбор величины сопротивления резистора в цепи сетки Выбор выходного разделительного конденсатора Вредное влияние проходной емкости лампы и пути его уменьшения Применение экранированных ламп Каскод (каскодная схема) Катодный повторитель Каскад с общим катодом как приемник неизменяющегося тока Пентоды в качестве приемников неизменяющегося тока Катодный повторитель с активной нагрузкой Катодный повторитель Уайта μ-повторитель Выбор верхней лампы для μ -повторителя Параллельно управляемый двухламповый усилитель (SRPP) β-повторитель Дифференциальная пара (дифференциальный каскад) Коэффициент реакции питающего...

7. Измерение и интерпретация искажений

Если же испытывается усилитель, не охваченный глубокой отрицательной обратной связью (например, ламповый усилитель), то измерение СКГ на одной частоте вполне может оказаться приемлемым. Электронная лампа является нелинейным элементам и вносит нелинейные искажения, поскольку ее проходная характеристика нелинейна. Эту нелинейность можно считать одинаковой на всех звуковых частотах, поскольку у подавляющего большинства электронных ламп частотная зависимость их характеристик наступает лишь в области достаточно высоких радиочастот. Исходя из этого свойства ламп, для оценки нелинейных искажений усилителя методом измерения уровня высших гармоник ...

8. Катодный повторитель Уайта

При внешнем различии, независимый катодный повторитель Уайта и двухламповый каскад SRPP, описанный позже, являются параллельно управляемыми усилителями, пото...

9. Основные виды источников питания

1 Сравнение блок-схем линейного и импульсного источников питания В противоположность импульсным источникам питания в линейных блоках сетевое напряжение промышленной частоты, чаще всего 50 Гц, с использованием массивного силового трансформатора, прежде всего понижается или повышается до необходимого значения. Затем включается ламповый или полупроводникового выпрямитель, совместно с которым используются сглаживающие конд...

10. Раздельное выравнивание частотной характеристики блока коррекции RIAA

Для этого будут использоваться пассивные элементы, обеспечивающие постоянную времени 75 мкс, за которыми будут действовать объединенные в пару цепи, задающие постоянные времени 3180 мкс и 318 мкс, а в качестве усилительного элемента будет использован ламповый триод. Блок-схему такого предусилителя удобно изобразить в виде, представленном на рис. 8.18. Рис. 8.18 Блок-схема предусилителя с блоком частотной характеристики RIAA Составление блок-схемы всегда полезно, прежде всего, потому, что позволяет более точно определиться со схемой и установить необходимость использования требуемого числа каскадов. Следует отметить, что при прорисовке блок-схемы не учитывались...

11. Использование накопительного конденсатора для снижения высоковольтного напряжения

Следует обратить внимание на полное отсутствие выбросов С другой стороны, когда для получения положительного высоковольтного напряжения используется стандартный ламповый выпрямитель, оказывается необходимым использовать трансформатор, имеющий отвод от с...

12. Классическая схема последовательного стабилизатора

27 Схема последовательного стабилизатора напряжения В приведенной схеме использованы полупроводниковые элементы, однако, возможен и ламповый вариант реализации этой схемы, обладающей аналогичными свойствами. Усилитель рассогласования (погрешностей) усиливает разностный сигнал между опорным напряжением и частью выходного напряжения и управляет работой последовательно включенного проходного транзистора таким образом, что выходное напряжение не изменяет своего значения. Работ...

13. Требования к каскаду предоконечного усиления

Поскольку выходной каскад представляет емкостную нагрузку, имеет смысл применить в качестве предоконечного параллельно управляемый двухламповый усилитель SRPP, который специально под такую нагрузку и разрабатывался. Такой усилитель характеризуется более высоким значением размаха амплитуд по сравнению с μ-повторителем при одинаковом значении высоковольтного питающего напряжения. Поэтому, более высокий уровень искажений является его единственным недостатком. Выбор лампы для каскада предоконечного усиления В идеале для каскада предоконечного усиления необходима лампа, обладающ...

14. Особенность выпрямления высоковольтного напряжения

Высоковольтный силовой трансформатор Чтобы обеспечить подачу высоковольтного напряжения 300 В в начало обмотки выходного трансформатора, был выбран ламповый выпрямитель, дополненный сглаживающим фильтром, содержащим дроссель. Следовательно, необходимо знать падение напряжение на резистивной составляющей сопротивления дросселя RDC В запасниках автора (а это боль...

15. Рабочий режим триода - Усилительный каскад с триодом

Подобно усилительному каскаду с транзистором ламповый каскад усиливает мощность колебаний. Рассмотрим усиление синусоидальных колебаний не, очень высокой частоты, при которой допустимо пренебречь влиянием межэлектродных емкостей лампы. Напряжение источника колебаний (рис. 18.3, а) выражается уравнением uвх = Umвх sin ωt. (18.2) На сетку подается также постоянное отрицательное напряжение Еg, называемое напряжением сеточного смещения (сеточным смещением, напряжением смещения или просто смещением). Оно «смещает» («сдвигает») работу лампы в область отр...

16. Возможности исключения линейного каскада

В настоящее время уровень цен делает приобретение такого оборудования вполне доступным, что позволяет рассматривать его в качестве потенциального кандидата для переделки под ламповый вариант. Головки магнитофона марки Studer требуют перемещения до положения, пока плоскость, проходящая через лицевые по...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Если изменять напряжение сетки, то изменяется высота потенциального барьера около катода. Следовательно, изменяется число электронов, преодолевающих этот барьер, т. е. катодный ток. Если напряжение сетки изменяется в положительную сторону, то барьер понижается, его преодолевает большее число электронов и катодный ток возрастает. А при изменении сеточного напряжения в отрицательную сторону барьер повышается, его преодолевает меньшее число электронов и катодный ток уменьшается. Управление током в триоде с помощью сетки аналогично управлению током в биполярном транзисторе. В транзисторе изменение напряжения на эмиттером переходе вызывает изменение высоты потенциального барьера в этом переходе и в результате изменяется ток эмиттера. Сетка не только управляет катодным током, но и существенно изменяет действие анода. Для электрического поля, создаваемого анодным напряжением, сетка является
электростатичес-
ким экраном, т. е. препятствием (при условии, что сетка соединена с катодом). Большая часть поля анода задерживается сеткой; лишь незначительная часть силовых линий поля проникает сквозь сетку и достигает потенциального барьера у катода. Таким образом, сетка экранирует катод от анода и ослабляет действие анода на потенциальный барьер около катода. Говорят, что сетка «задерживает» или «перехватывает» большую часть силовых линий электрического поля, создаваемого анодом. Чем гуще сетка, т. е. чем больше в ней проводников, чем они толще и чем меньше просветы между ними, тем меньшая часть силовых линий поля анода проникает сквозь сетку. Кроме того, экранирующее действие сетки максимально при некотором среднем положении ее между анодом и катодом. В диодах нормальные анодные токи получаются при анодных напряжениях, равных единицам или двум-трем десяткам вольт. Если же в диод ввести сетку, то при иg = 0 такие же анодные токи получаются при анодных напряжениях в десятки и сотни вольт. Сама сетка влияет на анодный ток гораздо сильнее, чем анод. Если подать на сетку напряжение, то возникающее электрическое поле сетки
беспрепятственн-
о достигает катода, так как между сеткой и катодом для поля нет препятствий. Сетка занимает «командное» положение. Она действует на электронный поток сильно, а действие анода во много раз ослаблено, вследствие того что сквозь сетку проникает лишь небольшая часть силовых линий поля анода. Было бы неправильно утверждать, что сет

 
 
Сайт создан в системе uCoz