Содержание

 

 
 

Необходимые внешние компоненты каскада усиления

1. Выходной каскад по ультралинейной схеме

Выходной каскад по ультралинейной схеме До сих пор в основном рассматривалось использование триодов, пентодам же было уделено незначительное внимание из-за огромного количества искажений, создаваемых этими лампами на нечетных гармониках. Однако, если представить себе первичную обмотку выходного трансформатора как обмотку с набором отводов, причем отвод от ее витков может быть сделан на любом витке, то можно достичь схемы включения промежуточной между триодной (когда экранирующая сетка соедине...

2. Многоэлектродные и специальные лампы - Схемы включения тетродов и пентодов

В более мощных каскадах анодный ток должен быть больше и Ug2 0 берется выше, устанавливают даже Ug2 0 = Ea Питание экранирующей сетки от отдельного источника иногда применяется в мощных каскадах. В маломощных и многоламповых устройствах такой способ невыгоден. Но его достоинство — постоянство напряжения Ug2 0 Напряжение Ug2 0 можно подавать также от анодного источника. Рис. 19.4. Схемы питания экранирующей сетки через понижающий резистор (а) и с помощью делителя (б) Наиболее р...

3. Фазоинверсный каскад

Рис. 7.14 Предоконечный каскад, в котором использован дифференциальный усилитель, непосредственно связанный с катодным повторителем Фазоинвертор (фазорасщепитель) преобразует несимметричный сигнал в два сигна...

4. Усилитель Williamson

«Согласованный» фазоинвертор питает предоконечный каскад усилителя мощности через RC цепь, имеющую постоянную времени порядка 22 мс, и точно также, как и предоконечный каскад, действует в отношении выходного каскада, а выходной трансформатор имеет постоянную времени 48 мс. Исходя из этого, нет ничего удивительного в том, что устойчивость работы в области низких частот весьма проблематична, что и было отмечено в первоначальной статье, опубликованной в журнале Wireless World. В 1952 г. Гафлер (Hafler) и Кероес (Keroes) решив, что разработанный ими выходной каскад мог бы с успехом питать...

5. Типы конденсаторов. Металлические конденсаторы с воздушным диэлектриком

У показанного справа подстроенного конденсатора ротор несколько выдвинут из корпуса, чтобы были видны пластины конденсатора Пленочные пластиковые фольговые конденсаторы Этот класс конденсаторов является наиболее важным для применения в ламповых усилителях, так как они используются в качестве конденсаторов межкаскадной связи, а также для прецизионных фильтров. Характеристики этих конденсаторов достаточно близки к идеальным, поэтому для характеристики их неидеальности достаточно часто используется тангенс угла диэлектрических потерь, tgδ. На практике наблюдается сильная связь между чисто субъективным понятием доброкачественности конденсатора и значением его параметра tgδ: конденсаторы с низким значением параметра tgδ субъективно просто превосходны. С точки зрения инженерной науки важность пар...

6. Общие проблемы устойчивости усилителей

Очевидным кандидатом для такого каскада является триодный дифференциальный усилитель, но также может быть использована схема с общим катодом с применением триода или пентода (рис. 7.22). В этом случае межкаскадная обратная связь воздействует на катодный вход. Рис. 7.22 Использование межкаскадной обратной связи во входном каскаде Схема входного каскада тривиальна, но может быть сл...

7. Выходной каскад класса А с несимметричным выходом

Очевидным решением данной проблемы является применение выходного трансформатора, согласующего нагрузку в виде громкоговорителя с выходными характеристиками электронной лампы или совокупности ламп выходного каскада (в случае, когда каскад образован не одной а несколькими лампами). Необходимость применения выходного трансфо...

8. Первый дифференциальный усилитель: его источник высоковольтного напряжения и линейность характеристики

Завершающие этапы разработки В целом, процесс разработки усилителя почти завершен: выбраны топология каскадов, типы ламп, рассчитаны анодные токи и сопротивления нагрузок. Пришло время «спуститься на землю» и заняться будничными, но жизненно необходимыми вещами, чтобы удостовериться в правильности сделанного выбора. Для этого необходимо в порядке очередности сделать следующее: • задать режимы по постоянному току (статические режимы) каждого каскада, разработав для них схему, задаю...

9. Основные виды источников питания

Достаточно часто для питания как предусилительных каскадов, так и усилителя мощности используется единый блок питания, который часто входит в состав усилителя мо...

10. Выпрямители с умножением (умножители) напряжения

Типичными примерами могут служить оконечные каскады формирования сверхвысокого напряжения, используемые в кинескопах телевизоров (напряжения порядка 10 — 25 кВ), аналоговых осциллографов (порядка 10 кВ), либо напряжения смещения поляризации, используемые в электростатических громкоговорителях (порядка 5 кВ). Впервые умножители напряжения понадобились физикам для создания ускоряющего напряжения 800 кВ, для проверки гипотезы...

11. Многоэлектродные и специальные лампы - Межэлектродные емкости тетродов и пентодов

Межэлектродные емкости тетродов и пентодов На схеме усилительного каскада с тетродом (рис. 19.8) помимо емкостей Сg1-к, Сa-g1 и Са-к показаны емкость между сетками Сg1-g2, емкость анод — экранирующая сетка Сa-g2 и емкость экранирующая сетка — катод Сg2-к. Входная емкость тетрода в режиме нагрузки Свх.раб = Сg1-к + Сg1-g2 + Сa-g1 (1 + K). (19.24) Рис. 19.8. Схема усилительного каскада с тетродом Проходная емкость Сa-g1 в тетроде составляет малые доли пикофарада. Поэтому значение Сa-g1 (1 + K) гораздо мен...

12. Учет собственных шумов лампы

Предусилитель с входным каскадом, построенным на лампе, имеющей значение крутизны 5,3 мА/В, первоначально предназначался для использования со звукоснимателем, имеющим подвижную катушку, совместно с повышающим трансформатором, имеющем коэффициент трансформации 1:10, позволяющим повысить входное напряжение сигнала, поступающего на предусилитель, до значения 2 мВ среднеквадратического значения при скорости перемещения иглы 5 см/с. Новый звукосниматель, используемый для возможной за...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

22.2, а, показывают резко выраженный режим насыщения. У ионных фотоэлементов (рис. 22.2,б) такие характеристики сначала идут почти так же, как у электронных фотоэлементов, но при дальнейшем увеличении анодного напряжения вследствие ионизации газа ток значительно возрастает, что оценивается коэффициентом газового усиления, который может быть равным от 5 до 12. Энергетические характеристики электронного и ионного фотоэлемента, дающие зависимость Iф = f(Ф) при Ua = const, показаны на рис. 22.3. Частотные характеристики
чувствительност-
и дают зависимость
чувствительност-
и от частоты модуляции светового потока. Из рис. 22.4 видно, что электронные фотоэлементы (линия 1) малоинерционны. Они могут работать на частотах в сотни мегагерц, а ионные фотоэлементы (кривая 2) проявляют значительную инерционность, и
чувствительност-
ь их снижается уже на частотах в единицы килогерц. Рис. 22.2. Анодные характеристики электронного (а) и ионного (б) фотоэлемента Рис. 22.3. Энергетические характеристики электронного (1) и ионного (2) фотоэлемента Рис. 22.4. Частотные характеристики электронного (1) и ионного (2) фотоэлемента Фотоэлемент обычно включен последовательно с нагрузочным резистором RH (рис. 22.5). Так как фототоки очень малы, то сопротивление фотоэлемента постоянному току весьма велико и составляет единицы или даже десятки мегаом. Сопротивление нагрузочного резистора желательно также большое. С него снимается напряжение, получаемое от светового сигнала. Это напряжение подается на вход усилителя, входная емкость которого шунтирует резистор RH. Чем больше сопротивление RH и чем выше частота, тем сильнее это шунтирующее действие и тем меньше напряжение сигнала на резисторе RH. Рис. 22.5. Схема включения фотоэлемента Основные электрические параметры фотоэлем

 
 
Сайт создан в системе uCoz