Содержание

 

 
 

Чем больше сопротивление R и емкость С, тем медленнее происходит заряд и тем ниже частота

1. Технические требования к линейному каскаду и способы их реализации

Известно, что управлять значением частоты ВЧ среза значительно сложнее по сравнению с частотой среза в низкочастотной области, поэтому весьма маловероятно, что вообще удастся получить каскады усилителей с идентичными значениями частот ВЧ среза, но если это все-таки произойдет, то для такого случая необходимо будет воспользоваться следующей формулой: Если принять, что частота ВЧ среза определяется только емкостью кабеля, который служит в качестве выходной нагрузки для линейного каскада, то расчет по ран...

2. Особенности работы электронных ламп на СВЧ - Основные типы электронных ламп для СВЧ

10,б), предназначенный для генерации колебаний мощностью до 5 Вт на частотах до 3000 МГц. Это металлическая лампа с цилиндрическими выводами анода и катода и дисковым выводом сетки. Выпущены также и другие «карандашные» диоды и триоды. Значительный интерес представляет также сверхминиатюрный триод с цилиндрическими выводами (рис. 24.10, в). Он предназначен для усилительных каскадов по схеме с общей сеткой,...

3. Особенности работы электронных ламп на СВЧ - Межэлектродные емкости и индуктивности выводов

Возьмем для примера лампу, имеющую С = 10 пф и L= 0,016 мкГн. Предельная частота у нее fпред = 1/(2π√LC) = 1/(2π√0,016·10-6·10·10-12) ≈ 400·106 Гц = 400 МГц, что соответствует длине волны 75 см. Очевидно, что эта лампа непригодна для дециметр...

4. Параметры цепей, определяющих постоянные времени 3180 мкс, 318 мкс, и проблемы взаимовлияния элементов цепей

Прежде всего, предположим, что этот конденсатор не вызовет никаких взаимовлияний. Если же это так, то частота среза цепи достаточно высока, и тогда сопротивление конденсатора в данной цепи будет представлять достаточно малую величину. Если это так, то его можно на эквивалентной схеме заменить короткозамкнутой перемычкой, и рассчитать новое значение выходного эквивалентного сопротивления данной эквивалентной схемы замещения Тевенина. Так как величины сопротивлений резисторов относятся как 9:1, то делитель напряжения обеспечивает ослабление в отношении 10:1, и выходное сопротивление будет, следовательно, составлять одну десятую сопротивления от значения верхнего (по схеме) ...

5. Принцип устройства и работы электро-вакуумных приборов - Термоэлектронные катоды

Когда ток достигает амплитудного значения, температура наивысшая, а при переходе тока через нуль температура наиболее низкая (рис. 15.7). Частота пульсаций температуры равна удвоенной частоте тока накала. С такой же частотой пульсирует эмиссия и анодный ток. Вторая причина фона переменного тока — неэквипотенциальность поверхности катода. Разные точки поверхности катода прямого накала имеют разные потенциалы, и анодное напряжение для этих точек ра...

6. Выбор выходного разделительного конденсатора

Кстати, существуют и «традиционные» значения этих элементов: резистор в цепи сетки следующего каскада сопротивлением 1 МОм и разделительный конденсатор емкостью 0,1 мкФ образуют фильтр, в котором частота среза по уровню —3 дБ равна 1,6 Гц. В некоторых современных разработках используются и другие решения, которые будут рассмотрены позже. ...

7. Усилитель класса А для электромагнитных головных телефонов с непосредственной междукаскадной связью

Для гарантии того, что шум остается синфазной помехой, резистор в цепи эмиттера и сопротивление делителя 1 МОм необходимо согласовывать, поэтому допуск 0,1 % являются идеальным. На высоких частотах, синфазное подавление дифференциальной пары ухудшается. Если зашунтировать резисторы 1 МОм конденсаторами, коэффициент усиления схемы сдвига уровня будет падать с частотой...

8. Использование транзисторов в качестве активной нагрузки для электронных ламп

Выходное сопротивление на низких частотах частично определяется параметром 1/hое, но определяющий вклад вносит параметр hfe, поскольку любое сопротивление в цепи эмиттера умножается на hfe. Выходное сопротивление на высоких частотах шунтируется паразитной емкостью между коллектором и эмиттером транзистора, которая частично определяется паразитными емкостями монтажа, а также емкостями самого транзистора. Обычно все ...

9. Особенности работы электронных ламп на СВЧ - Входное сопротивление и потери энергии

Усилительный каскад принято характеризовать коэффициентом усиления K, показывающим, во сколько раз усиливается напряжение. На высоких частотах важен также коэффициент усиления мощности Kp, показывающий, во сколько раз усиливается мощность: Kp, = Рвых/Рвх, (24.4) где Рвых — полезная мощность, отдаваемая лампой. При малом входном сопротивлении мощность Рвх может настолько возрасти, что Kp станет равен единице или будет еще меньше. Очевидно, н...

10. Катодный повторитель Уайта

Заметим, что из-за обратной связи по переменному току, которая снижает выходное сопротивление, выходное сопротивление повышается на низких частотах не до 1/gm, а до: В этом примере, rвых повышается до 1,5 кОм, вместо 200 Ом, которые получаются в обычном катодном повторителе. Практическое значение этого явления— каскад не будет таким эффективным коротким замыканием индуцированному шуму в выходном кабеле (например, помеха от сети электроснабжения), как каскад с выходным сопротивлением 6 Ом от постоянного тока до световых частот. Обычно нет необходимости точно вычислять коэффициент усиления Av, и общее приближение для катодного повторителя Av = μ /( μ + 1) в дос...

11. Требования к предоконечному каскаду усиления

Даже если каждая из рекомендованных ламп оконечного каскада типа 13Е1 требует напряжения возбуждения примерно 58 В среднеквадратического значения, каскад предварительного усиления имеет запас устойчивости порядка 10 дБ на всех частотах. Отсюда следует вывод: выходной каскад может перегружаться на 10 дБ (вызывая при этом высокие искажения) до того, как второй дифференциальный усилитель допустит блокировку, следовательно, восстановление при разумных значениях перегрузки будет моментальным. Суммируя все сказанное, можно заключить, что необходим каскад из двух дифференциальных усилителей, разделенных конденсатором, в которых ...

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация

 

Информация

Закон степени трех вторых Для диода, работающего в режиме объемного заряда, анодный ток и анодное напряжение связаны нелинейной зависимостью, которая приближенно выражается законом степени трех вторых: ia = gua3/2, (16.3) где коэффициент g зависит от геометрических размеров и формы электродов. Анодный ток пропорционален анодному напряжению в степени три вторых (3/2), а не в первой степени, как в законе Ома. Если увеличить, например, анодное напряжение вдвое, то анодный ток возрастет в 2,8 раза (так как 23/2 = √23 ≈ 2,8), т.е. станет на 40% больше, чем должен быть по закону Ома. Графически этот закон изображается полу кубической параболой (рис. 16.4). Закон степени трех вторых неприменим для режима насыщения, когда ia = = Is = const. Кривую ОАБ иногда называют теоретической характеристикой диода. Для диода с плоскими электродами g =
2,33·10-6Qa/da--
k2, (16.4) где Qa — действующая площадь анода; da-k — расстояние анод — катод. Истинная зависимость, между анодным током и анодным напряжением заметно отличается от закона степени трех вторых. Но, несмотря на неточность, закон степени трех вторых в простой форме учитывает нелинейные свойства лампы. Закон степени трех вторых Для диода, работающего в режиме объемного заряда, анодный ток и анодное напряжение связаны нелинейной зависимостью, которая приближенно выражается законом степени трех вторых: ia = gua3/2, (16.3) где коэффициент g зависит от геометрических размеров и формы электродов. Анодный ток пропорционален анодному напряжению в степени три вторых (3/2), а не в первой степени, как в законе Ома. Если увеличить, например, анодное напряжение вдвое, т

 
 
Сайт создан в системе uCoz